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Circulating microRNAs as biomarkers and mediators of platelet activation
Clemens Gutmann & Manuel Mayr

King’s College London British Heart Foundation Centre, School of Cardiovascular Medicine and Sciences, London, UK 

Abstract
Platelets are essential mediators of physiological hemostasis and pathological thrombosis. 
Currently available tests and markers of platelet activation did not prove successful in guiding 
treatment decisions for patients with cardiovascular disease, justifying further research into 
novel markers of platelet reactivity. Platelets contain a variety of microRNAs (miRNAs) and are 
a major contributor to the extracellular circulating miRNA pool. Levels of platelet-derived 
miRNAs in the circulation have been associated with different measures of platelet activation 
as well as antiplatelet therapy and have therefore been implied as potential new markers of 
platelet reactivity. In contrast to the ex vivo assessment of platelet reactivity by current platelet 
function tests, miRNA measurements may enable assessment of platelet reactivity in vivo. It 
remains to be seen however, whether miRNAs may aid clinical diagnostics. Major limitations in 
the platelet miRNA research field remain the susceptibility to preanalytical variation, non- 
standardized sample preparation and data normalization that hampers inter-study compari
sons. In this review, we provide an overview of the literature on circulating miRNAs as 
biomarkers of platelet activation, highlighting the underlying biology, the application in 
patients with cardiovascular disease and antiplatelet therapy and elaborating on technical 
limitations regarding their quantification in the circulation.
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Introduction

Over a century ago, platelets were identified as the main 
mediators of physiologic hemostasis and pathological throm
bosis [1]. Platelets are generated through membrane budding 
from megakaryocytes in the bone marrow and lungs [2,3] and 
hence enter the blood stream without a nucleus. Despite the 
absence of relevant amounts of genomic DNA, platelets 
inherit a vast amount of RNAs from their megakaryocyte 
precursors, including coding messenger RNAs (mRNAs) as 
well as noncoding microRNAs (miRNAs), long noncoding 
RNAs (lncRNAs), circular RNAs (circRNAs) and YRNAs. 
Among noncoding RNAs, most studies have investigated 
miRNAs in platelets. Given that platelets are enriched with 
miRNAs compared to mRNAs and that platelets are 
the second most abundant blood cell type, we and others 
demonstrated that platelets are the major source of miRNAs 
in plasma and serum [4–5]. Interestingly, both intraplatelet 
levels of certain miRNAs [9] and levels of platelet-derived 
miRNAs in the cell-free circulation [7] were found to corre
late with platelet reactivity. Thus, miRNAs have been inves
tigated as novel biomarkers of platelet reactivity, i.e. for 
monitoring the efficacy of antiplatelet therapy monitoring 
and assessing the risk of atherothrombosis, as highlighted in 
our previous reviews [6,10]. This review will provide an 
overview of miRNAs as biomarkers of platelet reactivity and 
highlight novel mechanisms that may have implications for 
the function of circulating miRNAs.

MicroRNA biology

MiRNAs are evolutionary highly conserved small RNAs (~ 22 
nucleotides), whose main function is to repress the synthesis 
of specific target proteins. This effect is typically mediated in 
complex with an Argonaute (Ago) protein, which guides one 
of the two complementary miRNA strands to the target 
mRNA. Through sequence complementarity of the miRNA 
seed region (~ 8 nucleotides) to the 3’-untranslated region 
of the target mRNA, protein synthesis is repressed. Until 
recently, this canonical RNA interference (RNAi; Figure 1) 
has been assumed to be the only regulatory mechanism of 
miRNAs. First evidence of regulatory functions that extend 
beyond RNAi came from studies implying ligand-like roles of 
miRNAs [11–15] (Figure 1): i) extracellular miRNA let-7 was 
shown to activate Toll-like receptors (TLRs) on microglia, 
macrophages and neurons [12,13]; ii) miR-21 and miR-129a 
secreted by tumor cells were shown to activate TLRs of 
immune cells [14]; and iii) extracellular miR-711 was shown 
to activate the transient receptor potential cation channel 
subfamily A member 1 (TRPA1) on neurons [15]. The fact 
that intracellular miRNA levels are around 13 times higher 
than Ago protein levels [16] and that only a fraction of 
miRNAs are bound (intra- or extracellularly) to Ago [16,17] 
provide support to this concept of a noncanonical miRNA 
pathway. However, concerns about artifacts remain due to 
the high miRNA concentrations used in these early studies. 
The physiological relevance of noncanonical miRNA roles has 
gained traction through a recent study that used sub-pmol/L 
miRNA concentrations (close to endogenous intracellular 
miRNA levels) showing that cardiomyocyte miR-1 physically 
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binds to plasma membrane Kir2.1 ion channels and modulates 
cardiac action potential [18]. Given that this noncanonical 
miR-1-Kir2.1 mechanism appeared to be evolutionary con
served between (mouse, guinea pig, canine and human) spe
cies [18], it is possible that this ligand-like interaction is part 
of a wider regulatory mechanism that has been overlooked; 
because neither screening methods, nor standard procedures 
used to study regulatory mechanisms would routinely identify 
biophysical activation of receptors by small RNAs. If con
firmed, the implications could be substantial, especially for 
the field of circulating miRNAs given the range of different 
cell-free miRNAs in blood. Most studies on horizontal 
miRNA transfer from the circulation to the cells could not 
convincingly explain the mechanism how circulating miRNAs 
enter specific target cells, evade degradation upon cellular 
entry, associate with Ago and compete for biological effects 
with the more abundant intracellular miRNA pool of the 
target cell [10]. The concept that circulating miRNAs regulate 
cell surface receptors via physical interactions is appealing 
because signals induced by miRNA-receptor ligation could be 
amplified by downstream signaling, allowing small amounts 
of circulating miRNAs to mediate biological effects. One 
argument against this concept of miRNA-cell surface receptor 
ligation, however, is that miRNAs in circulation are contained 
in vesicles or protein complexes that protect miRNAs from 
degradation by RNases, which are abundant in the circulation. 
MiRNAs would therefore need to either be released from 
vesicles or disassociate from their protein carriers for binding 
to cell surface receptors. Alternatively, the miRNA-protein 
complex may be able to bind receptors. The latter hypothesis 
could then involve a more active role for the miRNA carrier, 
potentially guiding the miRNA to its receptor target, similar 

to the role of Ago in RNAi. Experimental evidence for 
a noncanonical regulatory mechanism by miRNA ligands has 
yet to be shown but recent ground-breaking developments in 
RNA biology; such as the finding that small RNAs can be 
glycosylated and presented on the cell surface, where they 
interact with receptors of immune cells [19]; are expected to 
prompt further studies in this evolving area of research.

Intraplatelet microRNAs and platelet function

The first comprehensive assessment of miRNAs in platelets was 
performed in 2009, identifying 219 miRNAs using microarray 
profiling [20]. This number later increased to approximately 750 
miRNAs with next-generation sequencing (NGS), equivalent to 
approximately 30% of all known miRNA species [21]. The three 
most extensively studied platelet miRNAs are miR-223, miR-21 
and miR-126, which we will describe in the following section.

miR-223

Based on data from multiple studies, miR-223 appears to be 
the most abundant platelet miRNA [6]. Interestingly, intrapla
telet levels of specific miRNAs have been associated with 
hyporeactive and hyperreactive platelet responses to agonist 
stimulation [9] and conversely, several intraplatelet miRNAs 
are differentially expressed upon platelet activation [22], an 
effect that seems independent of the activation stimulus [23]. 
Several miRNAs were also shown to have functional roles in 
platelet activation (Figure 2). For instance, Landry et al. [20] 
have used a reporter gene assay to show that miR-223 pairs to 
the 3ʹUTR of the platelet P2Y12 receptor and found P2Y12 
mRNA in Ago immunoprecipitates. The findings by Landry 
et al. [20] suggest that miR-223 regulates the platelet P2Y12 
receptor, but whether this mechanism significantly regulates 

Figure 1. Canonical and noncanonical miRNA functions. In the nucleus, primary miRNA transcripts (pri-miRNA) are processed into precursor 
miRNAs (pre-miRNA) by a complex containing the endoribonuclease Drosha. Pre-miRNAs are then transferred to the cytoplasm through exportin-5 
(XPO5), where the endoribonuclease Dicer removes the hairpin structure of pre-miRNAs and generates mature miRNA duplexes. For canonical RNA 
interference (RNAi), miRNA duplexes associate with Argonaute-2 (AGO2) proteins, which incorporate one of the two strands and form the RNA- 
induced silencing complex (RISC), guiding the miRNA seed sequence to the target mRNA. Noncanonical ligand-like roles of miRNAs have only been 
documented in few studies but involve a ligand-like receptor interaction of miRNAs. Noncanonical ligand-like roles may potentially be mediated by 
both intra- and extracellular miRNAs. Extracellular miRNAs may be shuttled within vesicles or proteins.
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P2Y12 mRNA and protein levels in vivo is unclear. MiR-223 
deficiency in mice leads to increased thrombus size and pro
longed clot retraction [24], providing support for a potential 
effect of miR-223 on platelet activation. Similarly, in patients 
with type II diabetes, intraplatelet levels of miR-223 are 
reduced, whilst P2Y12 levels and platelet reactivity are 
increased [25]. The P2Y12 receptor, being mediator of the 
adenosine diphosphate platelet activation pathway, is a target 
of antiplatelet drugs like clopidogrel, prasugrel and ticagrelor. 
Accordingly, non-ST elevation myocardial infarction 
(NSTEMI) patients with a low response to clopidogrel were 
found to have lower intraplatelet levels of miR-223 [26].

miR-21

In another study in patients with acute coronary syndrome (ACS), 
levels of miR-223, miR-221 and miR-21 were upregulated in 
those patients with a high response to clopidogrel [27]. Notably, 
miR-21 is also known for its role in tissue fibrosis and progressed 
to clinical trials for Alport syndrome. Our group demonstrated 
that miR-21 manipulation in fibroblasts induced only marginal 
changes in extracellular matrix protein secretion. Instead, we 
reported a previously unrecognized effect of miR-21 inhibition 
on platelets. In plasma samples from the community-based 
Bruneck Study, we found a marked correlation for miR-21 levels 
with several platelet-derived pro-fibrotic factors, including trans
forming growth factor beta-1 (TGF-β1). Platelet α-granule secre
tion of TGF-β1 is a trigger for fibrotic responses. 
Pharmacological miR-21 inhibition with an antagomiR reduced 
the platelet release of TGF-β1 in mice. Mechanistically, Wiskott- 
Aldrich Syndrome protein is regulated by miR-21, which is 
a negative regulator of TGF-β1 secretion in platelets [28].

miR-126

A functional role in platelets has also been shown for miR-126: miR- 
126 inhibition with antagomirs led to reduced aggregation in mice 
[4], whilst transfection of miR-126 into CD34+-derived megakaryo
cytes increases reactivity of its platelet-like structures [29]. In line 
with these findings, a single-nucleotide polymorphism favoring 
miR-126 processing to a mature miRNA was found to be associated 
with higher levels of protein markers of platelet activation [4]. The 
inhibition of disintegrin and metalloproteinase domain-containing 
protein 9 (ADAM9; an inhibitor of platelet-collagen adhesion) and 
upregulation of the P2Y12 receptor [4,30,31] might be responsible 
for these effects. Moreover, miR-126 appears to have a key role in 
platelet-supported thrombin generation, based on in vivo miR-126 
overexpression in zebrafish, ex vivo miR-126 transfection of human 
megakaryocytes and association data from patients with cardiovas
cular disease (n = 185) [32].

Other miRNAs

A role for platelet activation despite aspirin treatment has recently 
been attributed to platelet miR-26b. MiR-26b targets the multi
drug resistance protein-4 involved in aspirin resistance, and miR- 
26b was downregulated upon aspirin treatment [33]. Platelet miR- 
204 was reported to regulate platelet reactivity through cell divi
sion control protein 42 (CDC42) downregulation and fibrinogen 
receptor expression [34]. In another recent study, healthy volun
teers were grouped according to very high and very low platelet 
reactivity as assessed by thromboelastography, identifying 
increased miR-150 levels in the high reactivity group [35]. 
These findings were then replicated in ACS patients, where 
patients with high on-treatment platelet reactivity had elevated 
miR-150 levels in platelets [35]. Another example of how platelet 

Figure 2. Intraplatelet miRNAs with known functions in platelet reactivity. MiR-126 targets ADAM9, which is an inhibitor of platelet-collagen 
adhesion. MiR-96 targets VAMP8, which is involved in platelet alpha-granule secretion. MiR-204 targets CDC42, leading to increased fibrinogen 
binding. MiR-21 targets WASP, a negative regulator of platelet TGF-β1 secretion. MiR-223 downregulates P2Y12, a key receptor for adenosine 
diphosphate platelet activation pathways.

514 C. Gutmann & M. Mayr                                                                                                 Platelets, 2022; 33(4): 512–519



function may be regulated by miRNAs is platelet miR-96, which 
targets vesicle-associated membrane protein 8 (VAMP8), 
involved in platelet α-granule secretion [36].

Circulating platelet-derived microRNAs and platelet 
function

The discovery of miRNAs in the cell-free circulation in 2008 [37] 
was surprising, given that RNases are abundant in the circulation 
and quickly degrade free RNA [38]. RNase-resistance of circulat
ing miRNAs was later attributed to protection by proteins or 
vesicles, which act as miRNA carriers in the circulation [10]. 
A large proportion of circulating miRNAs is derived from plate
lets, predominantly secreted within vesicles upon platelet activa
tion [4–8]. Differences in the miRNAome between platelet- 
derived vesicles and platelets have been suggested to be the result 
of a specific packaging mechanism rather than an unspecific bulk 
release [39], although experimental data for a specific release 
mechanism are lacking. Given that the platelet transcriptome is 
derived from megakaryocytes, the measurement of platelet- 
derived transcripts in the circulation also offers insight into the 
megakaryocyte transcriptome through a liquid biopsy.

In line with the concept of miRNAs being released upon 
platelet activation (Table I), Willeit et al. [7] analyzed changes 
in plasma miRNAs in response to antiplatelet therapy, showing 
that antiplatelet therapy was associated with significantly reduced 
miRNA levels [7]. Similarly, another study showed that the trans
fer of miR-126 from platelets to the plasma compartment upon 
platelet stimulation is prevented by aspirin [41]. Kaudewitz et al. 
[4] looked at the association of platelet-derived miRNAs with 
platelet reactivity in the community-based Bruneck study as well 
as in patients with ACS [4], showing that platelet-derived 
miRNAs such as miR-223 and miR-126 associate with platelet- 
derived proteins such as platelet factor 4, platelet basic protein 
and P-selectin in the general community, and associate with 

platelet reactivity in ACS patients as assessed by the vasodilator- 
stimulated phosphoprotein phosphorylation (VASP) assay [4]. 
MiRNAs also appear to capture rather nuanced changes in platelet 
reactivity, given that the switch from the weaker P2Y12 inhibitor 
clopidogrel to the stronger P2Y12 inhibitor ticagrelor was asso
ciated with a greater reduction in platelet-derived miR-126, miR- 
150 and miR-223 [44]. In a low dose endotoxemia model, the rise 
of miR-223, miR-223* and miR-197 was suggestive of platelet 
activation despite P2Y12 inhibitor treatment [49]. Similarly, it was 
recently shown that platelet-derived miR-21, miR-197 and miR- 
223 rise with COVID-19 severity [51], potentially reflecting the 
prothrombotic state in COVID-19. Interestingly, data from the 
prospective Bruneck study also showed that a combination of 
platelet-derived miR-126, miR-223 and miR-197 levels at base
line predicted incident cardiovascular events over a 10-year obser
vation period [40]. Similarly, another study found that the risk for 
arterial thrombotic events in patients with coronary heart disease 
is associated with circulating vesicle-bound miR-199a and miR- 
126 [43]. Furthermore, plasma miR-150 levels measured within 
72 hours of stroke symptom onset, were found to predict 90-day 
mortality in a cohort of ischemic stroke patients (n = 329) [45]. 
Associations between platelet reactivity and several platelet- 
derived miRNAs, such as miR-126, were also found in a large 
clinical trial of patients with NSTEMI (TRILOGY-ACS trial, 
n = 878) [48]. Similar to many protein biomarkers, levels of 
miRNA biomarkers may be confounded by medication, comor
bidities as well as demographic factors such as age, sex or body 
mass index [52]. One confounder appears to be type II diabetes, 
which associates with a reduction of several platelet-derived 
miRNAs [53], and other metabolic parameters such as obesity 
and lipid metabolism [54]. Data from diabetic patients on anti
platelet therapy, however, suggests that antiplatelet therapy may, 
at least partially, be responsible for the decrease of circulating 
platelet-derived miRNAs in diabetes: in a recent double-blind 
randomized controlled trial, treatment of diabetic patients with 

Table I. Selected studies on platelet-derived miRNAs as markers of platelet reactivity.

Ref. Year miRNAs Key findings

[40] 2012 miR-21, miR-24, miR-126, miR-197, miR-223 Patients with subsequent myocardial infarction showed co-expression patterns of 
circulating platelet-derived miRNAs.

[7] 2013 miR-20b, miR-21, miR-24, miR-126, miR-150, 
miR-191, miR-197, miR-223

Platelets were found to be a major source of circulating miRNAs. MiRNA levels 
were responsive to APT.

[41] 2013 miR-126 Platelets were found to be a major source of circulating miR-126. Aspirin use was 
associated with reduced miR-126 levels.

[42] 2014 miR-223 Circulating platelet miR-223 was found to be inversely associated with platelet 
reactivity.

[43] 2014 miR-126, miR-199a MiRNAs in microvesicles were found to predict cardiovascular events in CAD 
patients.

[44] 2016 miR-96, miR-126, miR-150, miR-223 A switch from a weaker to a stronger P2Y12 inhibitor associated with a reduction in 
circulating miRNAs.

[4] 2016 miR-126, miR-223 Circulating miRNA levels correlated with platelet function tests.
[45] 2017 miR-150 In ischemic stroke patients, miR-150 predicted 90-day mortality.
[46] 2019 miR-21, miR-126, miR-150, miR-223 Cessation of P2Y12 inhibitor treatment did not lead to an expected increase of 

circulating platelet-derived miRNAs.
[47] 2020 miR-21, miR-24, miR-191, miR-197, miR-223 In type II diabetes patients, addition of the P2Y12 inhibitor prasugrel to aspirin lead 

to a further decrease in platelet-derived miRNAs.
[48] 2020 miR-15b, miR-93, miR-126 Circulating miRNAs in ACS patients were found to correlate with platelet function 

tests.
[49] 2020 miR-197, miR-223, miR-223* Rise of platelet-derived miRNAs with endotoxemia reflected platelet activation 

despite P2Y12 inhibition.
[50] 2021 miR-1, miR-21, miR-23a, miR-24, miR-27b, miR- 

28, miR-29b, miR-33a, miR-126, 
miR-150, miR-191, miR-197, miR-223, miR-320a, 

miR-451a

In periodontitis patients, platelet-derived miRNA levels were not associated with 
platelet activation.

[51] 2021 miR-21, miR-126, miR-197, miR-223 Circulating platelet-derived miRNAs were found to rise with COVID-19 severity.

Abbreviations: ACS: acute coronary syndrome, APT: antiplatelet therapy, CAD: coronary artery disease, Ref: reference. 
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the strong P2Y12 inhibitor prasugrel led to a decrease of circulat
ing miR-24, miR-191, miR-197 and miR-223 compared to aspirin 
[47]. However, not all studies found significant associations 
between platelet-derived miRNAs and platelet reactivity: in 
a small randomized controlled trial investigating the effects of 
periodontal treatment on platelet function, as assessed by flow 
cytometry and miRNA measurements, platelet activation and 
reactivity indices did not correlate with the levels of platelet- 
derived miRNAs [50]. Other conflicting data from a small study 
showed that circulating platelet-related miRNAs are inversely 
associated with platelet reactivity as suggested by Chyrchel 
et al. [42]. In their study, higher miR-223 levels were associated 
with stronger platelet inhibition [42]. Moreover, a discontinuation 
of long-term P2Y12 inhibitor treatment did not lead to an 
expected increase of circulating platelet-derived miRNAs such 
as miR-21, miR-126, miR-150 and miR-223 [46]. Such conflict
ing data in studies of circulating miRNAs cannot only be 
explained by biological confounders but may also arise from 
preanalytical issues related to the measurement of miRNAs.

Analytical and preanalytical issues related to the 
measurement of microRNAs

Measurements of circulating platelet-derived miRNAs are 
impacted by sample preparation and data normalization 
(Figure 3). One major problem is the release of miRNAs from 
platelets that are activated after blood draw, thus overestimating 
in vivo miRNA levels. This problem can be minimized by rigor
ous standardization of sample collection and sample processing. 
The choice of anticoagulant used in blood tubes and differences in 
centrifugation speed or temperature may be responsible for inter- 
study differences [6]. The biggest discrepancies, however, are 
observed when platelet-derived miRNA levels are compared 
between plasma and serum: the preparation of serum involves 
activation of the coagulation cascade, which in turn results in 
uncontrolled platelet activation as well as potential proteolytic 
cleavage of protein miRNA-carriers. Thus, plasma is considered 
a more suitable matrix, but routine preparation of plasma often 

leads to substantial platelet activation or contamination with resi
dual platelets. We have proposed the use of platelet-poor plasma 
for circulating miRNA measurements, generated through two 
consecutive centrifugation steps in the presence of the platelet 
inhibitor prostacyclin [6]. Residual leukocytes in plasma are also 
a concern, since the total RNA content of a single leukocyte is 
around three orders of magnitudes higher than that of a single 
platelet [8].

Another important confounder is heparin, which is commonly 
administered to hospitalized patients or to patients undergoing 
coronary interventions. Heparin interferes with the polymerase 
chain reaction [55]. This effect can be overcome by treating 
RNA extracts with heparinase [56]. Most studies fail to report 
the administration of heparin or the treatment of RNA with 
heparinase. In addition to its effect on polymerase chain reactions, 
heparin may increase the release of platelet-derived extracellular 
vesicles, thus artefactually increasing platelet-derived miRNAs 
[57,58]. Moreover, neutrophil extracellular trap formation may 
be increased in heparinized samples [59]. Other important con
founders are RNases, which can be introduced during or after 
RNA isolation and substantially affect the miRNA measurements 
even in trace amounts through RNA degradation. Similarly, RNA 
degradation may occur due to prolonged storage or upon repeated 
freeze–thaw cycles.

Finally, different data normalization strategies may yield dif
ferent results [6]. Various single miRNAs or combinations of 
endogenous miRNAs, such as miR-16, miR-93, miR-103, miR- 
423 and miR-425 as well U6 RNA, have been proposed as 
normalizers based on stable expression of these RNAs [6]. 
Universal applicability of these normalizers, however, is question
able because the effect of many diseases or drugs on miRNA 
normalizers has not been sufficiently investigated yet. In the 
absence of a universal normalizer, the most robust approach 
may be to normalize to the average expression of a large panel 
of miRNAs [60], in addition to using an exogenous normalization 
control (e.g. Cel-miR-39-3p), that is spiked into the samples 
during RNA isolation [6].

Besides measurements of circulating miRNAs being impacted 
by analytical and preanalytical factors, miRNAs may also serve as 
markers of sample quality in platelet concentrates used for trans
fusion purposes. Platelet concentrates stored in blood banks may 
undergo storage lesions, which impair platelet structure and func
tion [61]. Several studies have looked at the differential expres
sion of miRNAs during prolonged storage and have revealed 
platelet miRNAs that are up- and downregulated with prolonged 
storage [61]. Accordingly, the ratios of certain miRNAs, such as 
a low miR-127/miR-320 ratio, have been implicated as a marker 
of platelet storage lesions [62].

Conclusions and perspectives

Recent developments in RNA biology, such as the finding that 
miRNAs may have functional roles as receptor ligands independent 
of RNAi [18], or that small RNAs anchored on the cell surface may 
interact with immune cell receptors [19], have potential to advance 
our understanding of the biological function of circulating cell-free 
miRNAs. A substantial proportion of circulating cell-free miRNAs 
are derived from platelets, and the levels of platelet-derived miRNAs 
are correlated with platelet activation. The clinical utility of miRNAs 
as biomarkers for platelet reactivity remains to be demonstrated in 
large clinical trials, and preanalytical issues need to be taken into 
consideration. The use of “biomarker signatures”, i.e. the use of 
a combination of measurements rather than single markers, is cer
tainly applicable to the miRNA field as well. The need for novel 
biomarkers of in vivo platelet reactivity is highlighted by the fact that 
existing ex vivo platelet function tests might not be as reliable, in 

Figure 3. Analytical and preanalytical issues related to the measurement 
of miRNAs.
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particular in acute settings such as MI due to an in vivo pre-activation 
of platelets leading to a hypo-responsiveness ex vivo [63]. 
Accordingly, existing platelet function tests are not commonly 
used to inform clinical decisions with regard to choice and dosage 
of antiplatelet therapy [64]. It remains to be seen whether platelet 
reactivity signatures based on miRNAs or other molecular measure
ments can address this clinical need or improve risk management of 
thrombotic complications.
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